These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification and domain structure of core hnRNP proteins A1 and A2 and their relationship to single-stranded DNA-binding proteins. Author: Kumar A, Williams KR, Szer W. Journal: J Biol Chem; 1986 Aug 25; 261(24):11266-73. PubMed ID: 3733753. Abstract: Protein A1 (Mr approximately 32,000), a major glycine-rich protein of heterogeneous nuclear ribonucleoproteins (hnRNP), was purified to near homogeneity under nondenaturing conditions from HeLa cells. Limited proteolysis of the native protein yields a trypsin-resistant N-terminal nucleic acid-binding domain about 195 amino acids long which has a primary structure nearly identical to that of the 195-amino acid-long single-stranded DNA (ssDNA)-binding protein UP1 (Mr 22,162) from calf thymus (Williams, K.R., Stone, K. L., LoPresti, M.B., Merrill, B. M., and Planck, S.R. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5666-5670). 45 of the 61 glycine residues of A1 are present in the trypsin-sensitive C-terminal domain of the protein which contains no sequences homologous to UP1. Protein A2, another major glycine-rich core hnRNP protein from HeLa, has a domain structure analogous to A1 and appears to be related to ssDNA-binding proteins UP1-B from calf liver and HDP-1 from mouse myeloma in a way similar to the A1/UP1 relationship. In contrast to ssDNA-binding proteins, A1 binds preferentially to RNA over ssDNA and exhibits no helix-destabilizing activity.[Abstract] [Full Text] [Related] [New Search]