These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons. Author: Strassman A, Highstein SM, McCrea RA. Journal: J Comp Neurol; 1986 Jul 15; 249(3):358-80. PubMed ID: 3734161. Abstract: Electrophysiological and intracellular labelling studies in the cat have identified a population of saccadic burst neurons in the medullary reticular formation that have an inhibitory, monosynaptic projection to the contralateral abducens nucleus. In the present study, intraaxonal recording and injection of horseradish peroxidase were used to identify and characterize the corresponding population of inhibitory burst neurons (IBNs) in the alert squirrel monkey. Squirrel monkey IBNs are located in the reticular formation ventral and caudal to the abducens nucleus and project contralaterally to the abducens. Additional contralateral projections are present to the vestibular nuclei, the nucleus prepositus, and the pontine and medullary reticular formation rostral and caudal to the abducens. All neurons fire a burst of spikes during saccades and are silent during fixation. In most neurons the burst begins 5-15 msec before saccade onset. The number of spikes in the saccadic burst is linearly related to the amplitude of the component of the saccade in the neuron's on-direction. Linear relationships also exist between burst duration and saccade duration and between firing frequency and instantaneous eye velocity. For all neurons, the on-direction is in the ipsilateral hemifield, with a vertical component that may be either upward or downward. Neurons with projections to the vertically related descending and superior vestibular nuclei tend to have on-directions with larger vertical components than neurons that lack these projections. These results, together with those on excitatory burst neurons reported in the preceding paper, demonstrate a reciprocal organization of burst neuron input to the abducens in the monkey similar to that found in the cat and indicate a major role for these neurons in generating the oculomotor activity in motoneurons as well as in other classes of premotor neurons.[Abstract] [Full Text] [Related] [New Search]