These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A G-triplex and G-quadruplex concatemer-enhanced fluorescence probe coupled with hybridization chain reaction for ultrasensitive aptasensing of ochratoxin A.
    Author: Wen J, Fan YY, Li J, Yang XW, Zhang XX, Zhang ZQ.
    Journal: Anal Chim Acta; 2023 Sep 01; 1272():341503. PubMed ID: 37355335.
    Abstract:
    Ochratoxin A (OTA), a typical mycotoxin contaminant found in various agricultural products and foods, poses a serious threat to human health. In this study, an aptasensor based on a novel fluorescence probe comprising a G-rich DNA sequence (G43) and thioflavin T (ThT) was designed via hybridization chain reaction (HCR) for the ultrasensitive detection of OTA. G43 is a concatemer of G-quadruplex and G-triplex (a G-quadruplex-like structure with one G-quartet removed), which can drastically enhance the fluorescence intensity of ThT. For this strategy to work, the OTA aptamer is pro-locked in a hairpin structure, denoted "hairpin-locked aptamer" (HL-Apt). OTA binds to HL-Apt, opens the hairpin structure, releases the trigger sequence, and initiates the HCR reaction to form a long DNA duplex and numerous side chains. The side chains combine entirely with the complementary DNA and liberate the pro-locked G43 DNA, dramatically enhancing the intensity of the ThT fluorescence signal. The fluorescence intensity correlates linearly with the OTA concentration between 0.02 and 2.00 ng mL-1, and the method has a detection limit of 0.008 ng mL-1. The developed aptasensor was used to detect OTA in foodstuffs with satisfactory results.
    [Abstract] [Full Text] [Related] [New Search]