These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design, Synthesis, Biological Evaluation, and Molecular Docking Study of 4,6-Dimethyl-5-aryl/alkyl-2-[2-hydroxy-3-(4-substituted-1-piperazinyl)propyl]pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-diones as Anti-Inflammatory Agents with Dual Inhibition of COX and LOX. Author: Redzicka A, Wiatrak B, Jęśkowiak-Kossakowska I, Kochel A, Płaczek R, Czyżnikowska Ż. Journal: Pharmaceuticals (Basel); 2023 May 29; 16(6):. PubMed ID: 37375750. Abstract: In the present study, we characterize the biological activity of a newly designed and synthesized series of 15 compounds 2-[2-hydroxy-3-(4-substituted-1-piperazinyl)propyl] derivatives of pyrrolo[3,4-c]pyrrole 3a-3o. The compounds were obtained with good yields of pyrrolo[3,4-c]pyrrole scaffold 2a-2c with secondary amines in C2H5OH. The chemical structures of the compounds were characterized by 1H-NMR, 13C-NMR, FT-IR, and MS. All the new compounds were investigated for their potencies to inhibit the activity of three enzymes, i.e., COX-1, COX-2, and LOX, by a colorimetric inhibitor screening assay. In order to analyze the structural basis of interactions between the ligands and cyclooxygenase/lipooxygenase, experimental data were supported by the results of molecular docking simulations. The data indicate that all of the tested compounds influence the activity of COX-1, COX-2, and LOX.[Abstract] [Full Text] [Related] [New Search]