These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular Dynamics Simulations Elucidate the Molecular Basis of Pre-mRNA Translocation by the Prp2 Spliceosomal Helicase.
    Author: Agrò SN, Rozza R, Movilla S, Aupič J, Magistrato A.
    Journal: J Chem Inf Model; 2023 Jul 10; 63(13):4180-4189. PubMed ID: 37379492.
    Abstract:
    The spliceosome machinery catalyzes precursor-messenger RNA (pre-mRNA) splicing by undergoing at each splicing cycle assembly, activation, catalysis, and disassembly processes, thanks to the concerted action of specific RNA-dependent ATPases/helicases. Prp2, a member of the DExH-box ATPase/helicase family, harnesses the energy of ATP hydrolysis to translocate a single pre-mRNA strand in the 5' to 3' direction, thus promoting spliceosome remodeling to its catalytic-competent state. Here, we established the functional coupling between ATPase and helicase activities of Prp2. Namely, extensive multi-μs molecular dynamics simulations allowed us to unlock how, after pre-mRNA selection, ATP binding, hydrolysis, and dissociation induce a functional typewriter-like rotation of the Prp2 C-terminal domain. This movement, endorsed by an iterative swing of interactions established between specific Prp2 residues with the nucleobases at 5'- and 3'-ends of pre-mRNA, promotes pre-mRNA translocation. Notably, some of these Prp2 residues are conserved in the DExH-box family, suggesting that the translocation mechanism elucidated here may be applicable to all DExH-box helicases.
    [Abstract] [Full Text] [Related] [New Search]