These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Subunit interaction in tryptophan synthase of Escherichia coli: calorimetric studies on association of alpha and beta 2 subunits. Author: Wiesinger H, Bartholmes P, Hinz HJ. Journal: Biochemistry; 1979 May 15; 18(10):1979-84. PubMed ID: 373796. Abstract: Association of the apo-beta 2 and the holo-(beta-PLP)2 subunits of tryptophan synthase from Escherichia coli (L-serine hydro-lyase (adding indole) (EC 4.2.1.20)) with alpha subunits of the same enzyme has been studied by microcalorimetry. The results obtained from thermometric titrations clearly demonstrate that only the native complex alpha2beta 2 is formed, independent of an excess of alpha protein. The reaction of the holo-(beta-PLP)2 with alpha subunits at 25 degrees C is accompanied by a negative enthalpy change, which is almost twice as large as that for complex formation with the apo-beta 2 protein, thus indicating that the interaction enthalpy becomes more favorable in the presence of the coenzyme pyridoxal 5'-phosphate (PLP). Both reaction enthalpies show very large negative temperature coefficients, -3600 +/- 100 cal K-1 (Mol of beta 2)-1 being the value for the formation of the apoenzyme and -2300 +/- 100 cal K-1 (mol of beta 2)-1 pertaining to formation of the holoenzyme. The studies on the association of alpha and beta2 subunits in the two buffers revealed that at 25 degrees C approximately 0.75 proton are absorbed in the presence and absence of the coenzyme, whereas at 35 degrees C one proton is taken up from the solution when PLP is present, but two if the apo-beta 2 complex reacts. These results are a clear indication of energetic linkage between intersubunit interaction, hydrogen ion equilibria, and the binding of the coenzyme.[Abstract] [Full Text] [Related] [New Search]