These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Compound Tinglizi Decoction intervenes COPD-associated pulmonary hypertension through regulation of HMGB1-mediated pyroptosis and immune imbalance]. Author: Wu XC, Liu Y, Bai ZP. Journal: Zhongguo Zhong Yao Za Zhi; 2023 Jun; 48(11):3055-3065. PubMed ID: 37381964. Abstract: This paper aimed to investigate the effects of high mobility group box 1(HMGB1)-mediated pulmonary artery smooth muscle cell pyroptosis and immune imbalance on chronic obstructive pulmonary disease-associated pulmonary hypertension(COPD-PH) in rats and the intervening mechanism of Compound Tinglizi Decoction. Ninety rats were randomly divided into a normal group, a model group, low-dose, medium-dose, and high-dose Compound Tinglizi Decoction groups, and a simvastatin group. The rat model of COPD-PH was established by fumigation combined with lipopolysaccharide(LPS) intravascular infusion, which lasted 60 days. Rats in the low, medium, and high-dose Compound Tinglizi Decoction groups were given 4.93, 9.87, and 19.74 g·kg~(-1) Compound Tinglizi Decoction by gavage, respectively. Rats in the simvastatin group were given 1.50 mg·kg~(-1) simvastatin by gavage. After 14 days, the lung function, mean pulmonary artery pressure, and arterial blood gas of rats were analyzed. Lung tissues of rats were collected for hematoxylin-eosin(HE) staining to observe the pathological changes. Real-time fluorescent quantitative polymerase chain reaction(qRT-PCR) was used to determine the expression of related mRNA in lung tissues, Western blot(WB) was used to determine the expression of related proteins in lung tissues, and enzyme linked immunosorbent assay(ELISA) was used to determine the levels of inflammatory factors in the lung tissues of rats. The ultrastructure of lung cells was observed by transmission electron microscope. The forced vital capacity(FVC), forced expiratory volume in 0.3 second(FEV_(0.3)), FEV_(0.3)/FVC, peek expiratory flow(PEF), respiratory dynamic compliance(Cdyn), arterial partial pressure of oxygen(PaO_2), and arterial oxygen saturation(SaO_2) were increased, and resistance of expiration(Re), mean pulmonary arterial pressure(mPAP), right ventricular hypertrophy index(RVHI), and arterial partial pressure of carbon dioxide(PaCO_2) were decreased by Compound Tinglizi Decoction in rats with COPD-PH. Compound Tinglizi Decoction inhibited the protein expression of HMGB1, receptor for advanced glycation end products(RAGE), pro caspase-8, cleaved caspase-8, and gasdermin D(GSDMD) in lung tissues of rats with COPD-PH, as well as the mRNA expression of HMGB1, RAGE, and caspase-8. Pulmonary artery smooth muscle cell pyroptosis was inhibited by Compound Tinglizi Decoction. Interferon-γ(IFN-γ) and interleukin-17(IL-17) were reduced, and interleukin-4(IL-4) and interleukin-10(IL-10) were incresead by Compound Tinglizi Decoction in lung tissues of rats with COPD-PH. In addition, the lesion degree of trachea, alveoli, and pulmonary artery in lung tissues of rats with COPD-PH was improved by Compound Tinglizi Decoction. Compound Tinglizi Decoction had dose-dependent effects. The lung function, pulmonary artery pressure, arterial blood gas, inflammation, trachea, alveoli, and pulmonary artery disease have been improved by Compound Tinglizi Decoction, and its mechanism is related to HMGB1-mediated pulmonary artery smooth muscle cell pyroptosis and helper T cell 1(Th1)/helper T cell 2(Th2), helper T cell 17(Th17)/regulatory T cell(Treg) imbalance.[Abstract] [Full Text] [Related] [New Search]