These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Lightweight Convolutional Neural Network Based on Dynamic Level-Set Loss Function for Spine MR Image Segmentation.
    Author: He S, Li Q, Li X, Zhang M.
    Journal: J Magn Reson Imaging; 2024 Apr; 59(4):1438-1453. PubMed ID: 37382232.
    Abstract:
    BACKGROUND: Spine MR image segmentation is important foundation for computer-aided diagnostic (CAD) algorithms of spine disorders. Convolutional neural networks segment effectively, but require high computational costs. PURPOSE: To design a lightweight model based on dynamic level-set loss function for high segmentation performance. STUDY TYPE: Retrospective. POPULATION: Four hundred forty-eight subjects (3163 images) from two separate datasets. Dataset-1: 276 subjects/994 images (53.26% female, mean age 49.02 ± 14.09), all for disc degeneration screening, 188 had disc degeneration, 67 had herniated disc. Dataset-2: public dataset with 172 subjects/2169 images, 142 patients with vertebral degeneration, 163 patients with disc degeneration. FIELD STRENGTH/SEQUENCE: T2 weighted turbo spin echo sequences at 3T. ASSESSMENT: Dynamic Level-set Net (DLS-Net) was compared with four mainstream (including U-net++) and four lightweight models, and manual label made by five radiologists (vertebrae, discs, spinal fluid) used as segmentation evaluation standard. Five-fold cross-validation are used for all experiments. Based on segmentation, a CAD algorithm of lumbar disc was designed for assessing DLS-Net's practicality, and the text annotation (normal, bulging, or herniated) from medical history data were used as evaluation standard. STATISTICAL TESTS: All segmentation models were evaluated with DSC, accuracy, precision, and AUC. The pixel numbers of segmented results were compared with manual label using paired t-tests, with P < 0.05 indicating significance. The CAD algorithm was evaluated with accuracy of lumbar disc diagnosis. RESULTS: With only 1.48% parameters of U-net++, DLS-Net achieved similar accuracy in both datasets (Dataset-1: DSC 0.88 vs. 0.89, AUC 0.94 vs. 0.94; Dataset-2: DSC 0.86 vs. 0.86, AUC 0.93 vs. 0.93). The segmentation results of DLS-Net showed no significant differences with manual labels in pixel numbers for discs (Dataset-1: 1603.30 vs. 1588.77, P = 0.22; Dataset-2: 863.61 vs. 886.4, P = 0.14) and vertebrae (Dataset-1: 3984.28 vs. 3961.94, P = 0.38; Dataset-2: 4806.91 vs. 4732.85, P = 0.21). Based on DLS-Net's segmentation results, the CAD algorithm achieved higher accuracy than using non-cropped MR images (87.47% vs. 61.82%). DATA CONCLUSION: The proposed DLS-Net has fewer parameters but achieves similar accuracy to U-net++, helps CAD algorithm achieve higher accuracy, which facilitates wider application. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.
    [Abstract] [Full Text] [Related] [New Search]