These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Copper-Catalyzed Enantioconvergent Radical C(sp3)-N Cross-Coupling of Activated Racemic Alkyl Halides with (Hetero)aromatic Amines under Ambient Conditions.
    Author: Chen JJ, Zhang JY, Fang JH, Du XY, Xia HD, Cheng B, Li N, Yu ZL, Bian JQ, Wang FL, Zheng JJ, Liu WL, Gu QS, Li ZL, Liu XY.
    Journal: J Am Chem Soc; 2023 Jul 12; 145(27):14686-14696. PubMed ID: 37392183.
    Abstract:
    The enantioconvergent C(sp3)-N cross-coupling of racemic alkyl halides with (hetero)aromatic amines represents an ideal means to afford enantioenriched N-alkyl (hetero)aromatic amines yet has remained unexplored due to the catalyst poisoning specifically for strong-coordinating heteroaromatic amines. Here, we demonstrate a copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions. The key to success is the judicious selection of appropriate multidentate anionic ligands through readily fine-tuning both electronic and steric properties for the formation of a stable and rigid chelating Cu complex. Thus, this kind of ligand could not only enhance the reducing capability of a copper catalyst to provide an enantioconvergent radical pathway but also avoid the coordination with other coordinating heteroatoms, thereby overcoming catalyst poisoning and/or chiral ligand displacement. This protocol covers a wide range of coupling partners (89 examples for activated racemic secondary/tertiary alkyl bromides/chlorides and (hetero)aromatic amines) with high functional group compatibility. When allied with follow-up transformations, it provides a highly flexible platform to access synthetically useful enantioenriched amine building blocks.
    [Abstract] [Full Text] [Related] [New Search]