These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The novel π-d conjugated TM2B3N3S6 (TM = Mo, Ti and W) monolayers as highly active single-atom catalysts for electrocatalytic synthesis of ammonia.
    Author: Sun Y, Shi W, Fu YQ, Yu H, Wang Z, Li Z.
    Journal: J Colloid Interface Sci; 2023 Nov 15; 650(Pt A):1-12. PubMed ID: 37392494.
    Abstract:
    Recently, single-atom catalysts (SACs) are receiving significant attention in electrocatalysis fields due to their excellent specific activities and extremely high atomic utilization ratio. Effective loading of metal atoms and high stability of SACs increase the number of exposed active sites, thus significantly improving their catalytic efficiency. Herein, we proposed a series (29 in total) of two-dimensional (2D) conjugated structures of TM2B3N3S6 (TM means those 3d to 5d transition metals) and studied the performance as single-atom catalysts for nitrogen reduction reaction (NRR) using density functional theory (DFT). Results show that TM2B3N3S6 (TM = Mo, Ti and W) monolayers have superior performance for ammonia synthesis with low limiting potentials of -0.38, -0.53 and -0.68 V, respectively. Among them, the Mo2B3N3S6 monolayer shows the best catalytic performance of NRR. Meanwhile, the π conjugated B3N3S6 rings undergo coordinated electron transfer with the d orbitals of TM to exhibit good chargeability, and these TM2B3N3S6 monolayers activate isolated N2 according to the "acceptance-donation" mechanism. We have also verified the good stability (i.e., Ef < 0, and Udiss > 0) and high selectivity (Ud = -0.03, 0.01 and 0.10 V, respectively) of the above four types of monolayers for NRR over hydrogen evolution reaction (HER). The NRR activities have been clarified by multiple-level descriptors (ΔG*N2H, ICOHP, and Ɛd) in the terms of basic characteristics, electronic property, and energy. Moreover, the aqueous solution can promote the NRR process, leading to the reduction of ΔGPDS from 0.38 eV to 0.27 eV for the Mo2B3N3S6 monolayer. However, the TM2B3N3S6 (TM = Mo, Ti and W) also showed excellent stability in aqueous phase. This study proves that the π-d conjugated monolayers of TM2B3N3S6 (TM = Mo, Ti and W) as electrocatalysts show great potentials for the nitrogen reduction.
    [Abstract] [Full Text] [Related] [New Search]