These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural elucidation of hemicelluloses from oil-tea camellia fruit shell.
    Author: Tang N, Cai Y, Ma JL, Ye H, Xiang ZY.
    Journal: Int J Biol Macromol; 2023 Aug 15; 246():125643. PubMed ID: 37394216.
    Abstract:
    Oil-tea camellia fruit shell (CFS) is a very abundant waste lignocellulosic resource. The current treatments of CFS, i.e. composting and burning, pose a severe threat on environment. Up to 50 % of the dry mass of CFS is composed of hemicelluloses. However, chemical structures of the hemicelluloses in CFS have not been extensively studied, which limits their high-value utilization. In this study, different types of hemicelluloses were isolated from CFS through alkali fractionation with the assistance of Ba(OH)2 and H3BO3. Xylan, galacto-glucomannan and xyloglucan were found to be the major hemicelluloses in CFS. Through methylation, HSQC and HMBC analyses, we have found that the xylan in CFS is composed of →4)-β-D-Xylp-(1→ and →3,4)-β-D-Xylp-(1→ linked by (1→4)-β glycosidic bond as the main chain; the side chains are α-L-Fucp-(1→, →5)-α-L-Araf-(1→, β-D-Xylp-(1→, α-L-Rhap-(1→ and 4-O-Me-α-D-GlcpA-(1→, connected to the main chain through (1→3) glycosidic bond. The main chain of galacto-glucomannan in CFS consists of →6)-β-D-Glcp-(1→, →4)-β-D-Glcp-(1→, →4,6)-β-D-Glcp-(1→ and →4)-β-D-Manp-(1→; the side chains are β-D-Glcp-(1→, →2)-β-D-Galp-(1→, β-D-Manp-(1→ and →6)-β-D-Galp-(1→ connected to the main chain through (1→6) glycosidic bonds. Moreover, galactose residues are connected by α-L-Fucp-(1→. The main chain of xyloglucan is composed of →4)-β-D-Glcp-(1→, →4,6)-β-D-Glcp-(1→ and →6)-β-D-Glcp-(1→; the side groups, i.e. β-D-Xylp-(1→ and →4)-β-D-Xylp-(1→, are connected to the main chain by (1→6) glycosidic bond; →2)-β-D-Galp-(1→ and α-L-Fucp-(1→ can also connect to →4)-β-D-Xylp-(1→ forming di- or trisaccharide side chains.
    [Abstract] [Full Text] [Related] [New Search]