These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Construction of rose flower-like NiCo-LDH electrode derived from bimetallic MOF for highly sensitive electrochemical sensing of hydrazine in food samples.
    Author: Tang X, Zhao S, Wu J, He Z, Zhang Y, Huang K, Zou Z, Xiong X.
    Journal: Food Chem; 2023 Nov 30; 427():136648. PubMed ID: 37399644.
    Abstract:
    It is necessary to efficient detection hydrazine in food. Exploring highly sensitive, low-cost and fast response electrochemical hydrazine sensing methods has been a challenge in this field. In this paper, a conformal transformation method is used to prepare rose flower-like NiCo-LDH derivating from the bimetallic NiCo-MOFs, and the N2H4 sensing platform with a large electrocatalytic area, high conductivity and good stability was constructed. Based on the synergy between Ni and Co and the remarkable catalytic activity of the rough 3D flower-like structure, the N2H4 sensor has a linear response in the concentration range of 0.001-1 mmol/L and 1-7 mmol/L, with a sensitivity of 5342 μA L mmol-1 cm-2 and 2965 μA L mmol-1 cm-2 (S/N = 3), respectively, and low limit of detection of 0.043 μmol/L. This study opens a new door for the successful application of electrochemical sensors to detect N2H4 in real food samples.
    [Abstract] [Full Text] [Related] [New Search]