These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chondroitin sulphate proteoglycan in the substratum adhesion sites of Balb/c 3T3 cells. Fractionation on various ion-exchange and affinity columns. Author: Wightman BC, Weltman EA, Culp LA. Journal: Biochem J; 1986 Apr 15; 235(2):469-79. PubMed ID: 3741402. Abstract: Proteoglycans on the cell surface play critical roles in the adhesion of fibroblasts to a fibronectin-containing extracellular matrix, including the model mouse cell line Balb/c 3T3. In order to evaluate the biochemistry of these processes, long-term [35S]sulphate-labelled proteoglycans were extracted quantitatively from the adhesion sites of 3T3 cells, after their EGTA-mediated detachment from the substratum, by using an extractant containing 1% octyl glucoside, 1 M-NaCl and 0.5 M-guanidinium chloride (GdnHCl) in buffer with many proteinase inhibitors. Greater than 90% of the material was identified as a large chondroitin sulphate proteoglycan (Kav. = 0.4 on a Sepharose CL2B column), and the remainder was identified as a smaller heparan sulphate proteoglycan; only small amounts of free chains of glycosaminoglycan were observed in these sites. These extracts were fractionated on DEAE-Sepharose columns under two different sets of elution conditions: with acetate buffer (termed DEAE-I) or with acetate buffer supplemented with 8 M-urea (termed DEAE-II). Under DEAE-I conditions about one-half of the material was eluted as a single peak and the remainder required 4 M-GdnHCl in order to recover it from the column; in contrast, greater than 90% of the material was eluted as a single peak from DEAE-II columns. Comparison of the elution of [35S]sulphate-labelled proteoglycan with that of 3H-labelled proteins from these two columns, as well as mixing experiments, indicated that the GdnHCl-sensitive proteoglycans were trapped at the top of columns, partially as a consequence of their association with proteins in these adhesion-site extracts. Affinity chromatography of these proteoglycans on columns of either immobilized platelet factor 4 or immobilized plasma fibronectin revealed that most of the chondroitin sulphate proteoglycan and the heparan sulphate proteoglycan bound to platelet factor 4 but that only the heparan sulphate proteoglycan bound to fibronectin, providing a ready means of separating the two proteoglycan classes. Affinity chromatography on octyl-Sepharose columns to test for hydrophobic domains in their core proteins demonstrated that a high proportion of the heparan sulphate proteoglycan but none of the chondroitin sulphate proteoglycan bound to the hydrophobic matrix. These results are discussed in light of the possible functional importance of the chondroitin sulphate proteoglycan in the detachment of cells from extracellular matrix and in light of previous affinity fractionations of proteoglycans from the substratum-adhesion sites of simian-virus-40-transformed 3T3 cells.[Abstract] [Full Text] [Related] [New Search]