These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probing Enhanced Electron-Phonon Coupling in Graphene by Infrared Resonance Raman Spectroscopy.
    Author: Venanzi T, Graziotto L, Macheda F, Sotgiu S, Ouaj T, Stellino E, Fasolato C, Postorino P, Mišeikis V, Metzelaars M, Kögerler P, Beschoten B, Coletti C, Roddaro S, Calandra M, Ortolani M, Stampfer C, Mauri F, Baldassarre L.
    Journal: Phys Rev Lett; 2023 Jun 23; 130(25):256901. PubMed ID: 37418733.
    Abstract:
    We report on resonance Raman spectroscopy measurements with excitation photon energy down to 1.16 eV on graphene, to study how low-energy carriers interact with lattice vibrations. Thanks to the excitation energy close to the Dirac point at K, we unveil a giant increase of the intensity ratio between the double-resonant 2D and 2D^{'} peaks with respect to that measured in graphite. Comparing with fully ab initio theoretical calculations, we conclude that the observation is explained by an enhanced, momentum-dependent coupling between electrons and Brillouin zone-boundary optical phonons. This finding applies to two-dimensional Dirac systems and has important consequences for the modeling of transport in graphene devices operating at room temperature.
    [Abstract] [Full Text] [Related] [New Search]