These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mainstream nitrogen removal from low temperature and low ammonium strength municipal wastewater using hydrogel-encapsulated comammox and anammox.
    Author: Li B, Godfrey BJ, RedCorn R, Candry P, Abrahamson B, Wang Z, Goel R, Winkler MH.
    Journal: Water Res; 2023 Aug 15; 242():120303. PubMed ID: 37419028.
    Abstract:
    Application of partial nitritation (PN)-anammox to mainstream wastewater treatment faces challenges in low water temperature and low ammonium strength. In this study, a continuous flow PN-anammox reactor with hydrogel-encapsulated comammox and anammox was designed and operated for nitrogen removal from mainstream wastewater with low temperature. Long-term operation with synthetic and real wastewater as the feed demonstrated nearly complete ammonium and total inorganic nitrogen (TIN) removal by the reactor at temperatures as low as 10 °C. A significantly decreased nitrogen removal performance and biomass activity was observed in the reactor at 4 °C before a selective heating strategy was employed. A novel heating technology using radiation to heat carbon black co-encapsulated in the hydrogel matrix with biomass was used to selectively heat biomass but not water in the treatment system. This selective heating technology enabled nearly complete ammonium removal and 89.4 ± 4.3 % TIN removal at influent temperature of 4 °C and reactor temperature 5 °C. Activity tests suggested selective heating brought the biomass activity at influent temperatures of 4 °C and reactor temperature 5 °C to a level comparable to that at 10 °C. Comammox and anammox were consistently present in the system and spatially organized in the hydrogel beads as revealed by qPCR and fluorescence in-situ hybridization (FISH). The abundance of comammox largely decreased by 3 orders of magnitude during the operation at 4 °C, and rapidly recovered after the application of selective heating. The anammox-comammox technology tested in this study essentially enabled mainstream shortcut nitrogen removal, and the selective heating ensured good performance of the technology at temperature as low as 5 °C.
    [Abstract] [Full Text] [Related] [New Search]