These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Seed Priming with Glutamic-Acid-Functionalized Iron Nanoparticles Modulating Response of Vigna radiata (L.) R. Wilczek (Mung Bean) to Induce Osmotic Stress.
    Author: Ul Haq T, Ullah R, Khan MN, Nazish M, Almutairi SM, Rasheed RA.
    Journal: Micromachines (Basel); 2023 Mar 26; 14(4):. PubMed ID: 37420969.
    Abstract:
    Rising soil salinity is a major concern for agricultural production worldwide, particularly in arid and semi-arid regions. To improve salt tolerance and the productivity of economic crop plants in the face of future climatic changes, plant-based solutions are required to feed the continuously increasing world population. In the present study, we aimed to ascertain the impact of Glutamic-acid-functionalized iron nanoparticles (Glu-FeNPs) on two varieties (NM-92 and AZRI-2006) of mung beans with different concentrations (0, 40 mM, 60 mM, and 80 mM) of osmotic stress. The result of the study showed that vegetative growth parameters such as root and shoot length, fresh and dry biomass, moisture contents, leaf area, and the number of pods per plant were significantly decreased with osmotic stress. Similarly, biochemicals such as protein, chlorophylls, and carotenes contents also significantly declined under induced osmotic stress. The application of Glu-FeNPs significantly (p ≤ 0.05) restored both the vegetative growth parameters and biochemical contents of plants under osmotic stress. The pre-sowing treatment of seeds with Glu-FeNPs significantly ameliorated the tolerance level of Vigna radiata to osmotic stress by optimizing the level of antioxidant enzymes and osmolytes such as superoxide dismutase (SOD), peroxidase (POD), and proline contents. Our finding indicates that Glu-FeNPs significantly restore the growth of plants under osmotic stress via enhancing photosynthetic activity and triggering the antioxidation system of both varieties.
    [Abstract] [Full Text] [Related] [New Search]