These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea.
    Author: Li H, Luo X, Haruna SA, Zareef M, Chen Q, Ding Z, Yan Y.
    Journal: Food Chem; 2023 Dec 01; 428():136798. PubMed ID: 37423106.
    Abstract:
    Pesticide residue detection in food has become increasingly important. Herein, surface-enhanced Raman scattering (SERS) coupled with an intelligent algorithm was developed for the rapid and sensitive detection of pesticide residues in tea. By employing octahedral Cu2O templates, Au-Ag octahedral hollow cages (Au-Ag OHCs) were developed, which improved the surface plasma effect via rough edges and hollow inner structure, amplifying the Raman signals of pesticide molecules. Afterward, convolutional neural network (CNN), partial least squares (PLS), and extreme learning machine (ELM) algorithms were applied for the quantitative prediction of thiram and pymetrozine. CNN algorithms performed optimally for thiram and pymetrozine, with correlation values of 0.995 and 0.977 and detection limits (LOD) of 0.286 and 29 ppb, respectively. Accordingly, no significant difference (P greater than 0.05) was observed between the developed approach and HPLC in detecting tea samples. Hence, the proposed Au-Ag OHCs-based SERS technique could be utilized for quantifying thiram and pymetrozine in tea.
    [Abstract] [Full Text] [Related] [New Search]