These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Composition, Antibiofilm, and Antibacterial Potential of Volatile Oils from Geopropolis of Different Stingless Bees' Species. Author: Storch Portal A, Schiquet S, Padilha Amaral B, Mascarenhas Krepsky L, Curbani L, Andrade Rebelo R, Rau M, Althoff SL, Guedes A, Mendes de Cordova CM. Journal: Chem Biodivers; 2023 Aug; 20(8):e202300592. PubMed ID: 37432091. Abstract: We aimed to characterize and investigate the antibacterial potential of the native stingless bees geopropolis volatile oils (VO) for the search of potentially new bioactive compounds. Geopropolis samples from Melipona bicolor schencki, M. compressipes manaosensis, M. fasciculata, M. quadrifasciata, M. marginata and M. seminigra merrillae were collected from hives in South Brazil. VO were obtained by hydrodistillation and characterised by gas chromatography coupled to mass spectrometry (GC/MS). Antimicrobial activity was assessed by microplate dilution method. The lowest MIC against cell walled bacteria was 219±0 μg mL-1 from M. quadrifasciata geopropolis VO with Staphylococcus aureus. The M. b. schencki geopropolis VO minimal inhibition concentration (MIC) was 424±0 μg mL-1 against all the mycoplasma strains evaluated. Fractionation resulted in the reduction of 50 % of the MIC value from the original oil. However, its compounds' synergism seems to be essential to this activity. Antibiofilm assays demonstrated 15.25 % eradication activity and 13.20 % inhibition of biofilm formation after 24 h for one subfraction at 2× its MIC as the best results found. This may be one of the essential mechanisms by which geopropolis VOs perform their antimicrobial activity.[Abstract] [Full Text] [Related] [New Search]