These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-146a negatively regulates inflammation via the IRAK1/TRAF6/NF-κB signaling pathway in dry eye.
    Author: Han R, Gao J, Wang L, Hao P, Chen X, Wang Y, Jiang Z, Jiang L, Wang T, Zhu L, Li X.
    Journal: Sci Rep; 2023 Jul 11; 13(1):11192. PubMed ID: 37433841.
    Abstract:
    Inflammation is a key factor in the pathogenesis of dry eye disease (DED). We aimed to investigate the role of microRNA-146a (miR-146a) in regulating corneal inflammation in a mouse model of benzalkonium chloride (BAC)-induced dry eye and the TNF-α-induced NF-κB signaling pathway in human corneal epithelial cells (HCECs). A mouse model of dry eye was established by administering with BAC to BALB/c mice, and the expression of TNF-α, IL-1β, IL-6, IL-8, cyclooxygenase 2 (COX2), interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) in the corneas of dry eye model mice was significantly increased; this was accompanied by the upregulation of miR-146a and activation of the NF-κB pathway. In vitro, TNF-α induced miR-146a expression in HCECs, while the NF-κB inhibitor SC-514 reduced the expression of miR-146a. Overexpression of miR-146a decreased the expression of IRAK1 and TRAF6, which have been identified as targets of miR-146a. Furthermore, overexpression of miR-146a suppressed NF-κB p65 translocation from the cytoplasm to the nucleus. Moreover, overexpression of miR-146a attenuated the TNF-α-induced expression of IL-6, IL-8, COX2 and intercellular adhesion molecule 1 (ICAM1), while inhibition of miR-146a exerted the opposite effect. Our results suggest that miR-146a mediates the inflammatory response in DED. MiR-146a negatively regulates inflammation in HCECs through the IRAK1/TRAF6/NF-κB pathway, and this may serve as a potential therapeutic approach for the treatment of DED.
    [Abstract] [Full Text] [Related] [New Search]