These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GABA Application Enhances Drought Stress Tolerance in Wheat Seedlings (Triticum aestivum L.).
    Author: Zhao Q, Ma Y, Huang X, Song L, Li N, Qiao M, Li T, Hai D, Cheng Y.
    Journal: Plants (Basel); 2023 Jun 29; 12(13):. PubMed ID: 37447056.
    Abstract:
    In this study, the effects of γ-aminobutyric acid (GABA) on physio-biochemical metabolism, phenolic acid accumulation, and antioxidant system enhancement in germinated wheat under drought stress was investigated. The results showed that exogenous GABA reduced the oxidative damage in wheat seedlings caused by drought stress and enhanced the content of phenolics, with 1.0 mM being the most effective concentration. Six phenolic acids were detected in bound form, including p-hydroxybenzoic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, and sinapic acid. However, only syringic acid and p-coumaric acid were found in free form. A total of 1.0 mM of GABA enhanced the content of total phenolic acids by 28% and 22%, respectively, compared with that of drought stress, on day four and day six of germination. The activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) were activated by drought stress plus GABA treatment. Antioxidant enzyme activities were also induced. These results indicate that GABA treatment may be an effective way to relieve drought stress as it activates the antioxidant system of plants by inducing the accumulation of phenolics and the increase in antioxidant enzyme activity.
    [Abstract] [Full Text] [Related] [New Search]