These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transcriptomic and metabolite analyses provided a new sight of 1-MCP on organic acid metabolism in peach during storage. Author: Cai H, Han S, Wang Q, Liu X, Yu Z. Journal: J Food Sci; 2023 Aug; 88(8):3323-3331. PubMed ID: 37458299. Abstract: In this study, "Xiahui 6" peaches were treated with 10 µL/L 1-methylcyclopropene (1-MCP) for 12 h and then stored at 20°C for 9 days; the regulation of 1-MCP on organic acids during storage was investigated through transcriptomic and metabolite analyses. Results showed that 1-MCP maintained higher gene expression of malate synthesis (PpPEPC1, PpPEPC2, and PpNAD-cytMDH) at the end of storage but extremely inhibited the gene expression of malate degradation (PpNADP-cytME) during storage, resulting that malate content in treated peaches was twice that of control group at day 7. Besides, the increasement of citrate synthesis and degradation-related genes (PpmitCS, PpcytACO, PpNAD-mitIDH, and PpNADP-cytIDH) at days 3 and 5 was postponed by 1-MCP treatment, accompanied by 0.5 times higher citrate content at day 7. Our results suggested that 1-MCP has inhibitory effects on both the synthesis and degradation of organic acids; however, the inhibitory effect of 1-MCP on organic acid degradation may be greater than that on organic acid synthesis. Practical Application: This study provides a theoretical basis for the application of 1-methylcyclopropene (1-MCP) in fruit preservation.[Abstract] [Full Text] [Related] [New Search]