These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of an ADAMTS2 frameshift variant in a cat family with Ehlers-Danlos syndrome. Author: Simon R, Kiener S, Thom N, Schäfer L, Müller J, Schlohsarczyk EK, Gärtner U, Herden C, Leeb T, Lühken G. Journal: G3 (Bethesda); 2023 Aug 30; 13(9):. PubMed ID: 37462293. Abstract: We investigated 4 European domestic shorthair kittens with skin lesions consistent with the dermatosparaxis type of the Ehlers-Danlos syndrome, a connective tissue disorder. The kittens were sired by the same tomcat but were born by 3 different mothers. The kittens had easily torn skin resulting in nonhealing skin wounds. Both clinically and histologically, the skin showed thin epidermis in addition to inflammatory changes. Changes in collagen fibers were visible in electron micrographs. The complete genome of an affected kitten was sequenced. A one base pair duplication leading to a frameshift in the candidate gene ADAMTS2 was identified, p.(Ser235fs*3). All 4 affected cats carried the frameshift duplication in a homozygous state. Genotypes at this variant showed perfect cosegregation with the autosomal recessive Ehlers-Danlos syndrome phenotype in the available family. The mutant allele did not occur in 48 unrelated control cats. ADAMTS2 loss-of-function variants cause autosomal recessive forms of Ehlers-Danlos syndrome in humans, mice, dogs, cattle, and sheep. The available evidence from our investigation together with the functional knowledge on ADAMTS2 in other species allows to classify the identified ADAMTS2 variant as pathogenic and most likely causative variant for the observed Ehlers-Danlos syndrome.[Abstract] [Full Text] [Related] [New Search]