These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Blends of rostral and caudal scratch reflex motor patterns elicited by simultaneous stimulation of two sites in the spinal turtle. Author: Stein PS, Camp AW, Robertson GA, Mortin LI. Journal: J Neurosci; 1986 Aug; 6(8):2259-66. PubMed ID: 3746408. Abstract: Simultaneous tactile stimulation of 2 sites on the body surface of a spinal turtle elicits complex blends of the scratch forms and motor patterns associated with each site. Our previous work has utilized 1-site stimulation to elicit distinct forms of the scratch reflex in the spinal turtle (Mortin et al., 1985; Robertson et al., 1985). Using this paradigm, stimulation of a site on the shell bridge anterior to the hindlimb elicits a rostral scratch reflex in which the dorsum of the foot rubs against the stimulated site; stimulation of a site near the tail elicits a caudal scratch reflex in which the heel or side of the foot rubs against the stimulated site (Mortin et al., 1985). During each scratch cycle, the monoarticular knee extensor muscle is active when the limb rubs against the stimulated site, and there is rhythmic alternation between hip protractor and hip retractor muscle activity (Robertson et al., 1985). In a rostral scratch, the monoarticular knee extensor muscle is active during the latter portion of hip protractor muscle activity; in a caudal scratch, the monoarticular knee extensor muscle is active near the end of hip retractor muscle activity. Pure-form motor patterns that are similar to those recorded from these muscles during movement can be recorded from the corresponding nerves in a spinal turtle immobilized with a neuromuscular blocking agent (Robertson et al., 1985). In this paper, we describe blend responses to simultaneous stimulation of 2 sites, one in the rostral scratch and the other in the caudal scratch receptive field. During these blends, the responding hindlimb rubs against both stimulated sites in one continuous movement sequence.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]