These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Orange-red luminescence of samarium-doped bismuth-germanium-borate glass for light-emitting devices.
    Author: V S Bhagavan N, Ravanamma R, Krishnaiah KV, Ravi N, Kagola UK, Kesavulu CR, Saranya PL, Venkatramu V.
    Journal: Luminescence; 2023 Oct; 38(10):1750-1757. PubMed ID: 37464921.
    Abstract:
    Samarium (Sm3+ )-doped glass has sparked a rising interest in demonstrating a noticeable emission in the range of 400-700, which is advantageous in solid-state lasers in the visible region, colour displays, undersea communication, and optical memory devices. This study reports the fabrication of Sm3+ -doped bismuth-germanium-borate glasses were established using a standard melt-quenching technique and inspection by absorption, steady-state luminescence, and transient studies. The typical peaks of Sm3+ ions were detected in the visible range under 403 nm excitation. A strong emission band was detected at 599 nm that resembles the 4 G5/26 H7/2 transition of Sm3+ ions for BGBiNYSm0.5 glass. Furthermore, a reddish-orange (coral) luminescence at 646 nm that resembles the 4 G5/26 H9/2 transition was also perceived. The stimulated emission cross-section of 4 G5/2 level for BGBiNYSm0.5 glass was 0.39 × 10-22  cm2 . Lifetime of the 4 G5/2 level was enhanced for the BGBiNYSm0.5 glass and decreased with an increase in active ion concentrations. The lifetime quenching of ions at the metastable state was because of energy transfer among Sm3+ ions by cross-relaxation channels. Commission Internationale de l'Éclairage (CIE) coordinates were evaluated from the emission spectra. Moreover, all the findings recommend these glass as light-emitting materials in the coral region at 599 nm for solid-state lighting applications.
    [Abstract] [Full Text] [Related] [New Search]