These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Co-electron donors driven medium-chain fatty acids production: Roles of electron donors, reaction kinetics and metabolic pathways. Author: Wu SL, Long Y, Wei W, Shi X, Shen D, Ni BJ. Journal: Chemosphere; 2023 Oct; 338():139515. PubMed ID: 37474034. Abstract: Energy conversion of waste activated sludge alkaline fermentation liquor (WASAFL) to medium-chain fatty acids (MCFAs) is promising for sludge treatment and carbon recovery. However, the single electron donor (ED) fermentation for MCFAs production has irreparable defects. To resolve the respective shortcomings of single electron donor (ED) and improve the MCFAs production efficiency from WASAFL, a novel biotechnical process utilizing ethanol and lactate as co-EDs within different combination ratios were investigated. The results verified that MCFAs production was highest with ethanol to lactate ratio of 1:3 (6988.54 ± 208.18 mg COD/L), being 1.46 and 1.87 times of that with ethanol and lactate as single ED. The kinetic analysis results confirmed that ethanol to lactate ratio of 1:3 resulted in the highest MCFAs yield and formation rate. The microbial taxa results uncovered that the relative abundance of Sphaerochaeta and Haloimpatiens showed positive correlation with MCFAs production. The metabolic pathway analysis indicated that the ethanol oxidization, lactate oxidization, acrylate pathway, reverse β oxidization and fatty acid biosynthesis pathway might take place in the WASAFL fermentation system, contributing to the WASAFL-to-MCFAs conversion.[Abstract] [Full Text] [Related] [New Search]