These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MIL-88B(Fe)-NH2: an amine-functionalized metal-organic framework for application in a sensitive electrochemical sensor for Cd2+, Pb2+, and Cu2+ ion detection.
    Author: Tran LT, Dang HTM, Tran HV, Hoang GTL, Huynh CD.
    Journal: RSC Adv; 2023 Jul 19; 13(32):21861-21872. PubMed ID: 37475762.
    Abstract:
    We propose here an electrochemical platform for multi-heavy metal ion detection in water based on MIL-88B(Fe)-NH2, an amine-functioned metal-organic framework (MOF) for modifying the surface of a glassy carbon electrode (GCE). Herein, MIL-88B(Fe)-NH2 with abundant functionalized amine groups can play the role of capture sites for the enrichment of metal ions before electrochemical oxidation sensing. MIL-88B(Fe)-NH2 was synthesized under optimized conditions through a solvothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. MIL-88B(Fe)-NH2 was then drop-casted on GCE to electrochemically determine the Cd2+, Pb2+ and Cu2+ ion concentrations by differential pulse voltammetry (DPV). The electrochemical sensor exhibits excellent electrochemical performance toward Cd2+, Pb2+ and Cu2+ ions in the large linear ranges of 0.025-1.000 μM, 0.3-10.0 μM and 0.6-10.0 μM with limits of detection that are 2.0 × 10-10 M, 1.92 × 10-7 M and 3.81 × 10-7 M, respectively. The fabricated sensor also shows high reliability and good selectivity. This MIL-88B(Fe)-NH2 application strategy is promising for the evaluation of various heavy metal ions in water.
    [Abstract] [Full Text] [Related] [New Search]