These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The mechanism of rectification at the electrotonic motor giant synapse of the crayfish. Author: Jaslove SW, Brink PR. Journal: Nature; ; 323(6083):63-5. PubMed ID: 3748182. Abstract: The synapse between the giant interneurone and the motor giant axon of the crayfish is a well-known example of the rare class of current-rectifying electrotonic synapses. One early proposal for the basis of this rectification was that rectifying junctions are like diodes. Biological correlates of diodes can exist, such as constant-field channels which rectify by very high-speed rearrangements of charge carriers, but these require high selectivity and large concentration gradients. Electrotonic synapses are believed to be composed of wide-bore (1-2 nm) gap-junction channels which have poor selectivity and bridge similar intracellular compartments. An alternative mechanism for rectification would be by voltage-dependent gates that sense trans-synaptic potential. These two mechanisms can be distinguished because a diode should rectify instantaneously (on a biological time-scale) while a gated channel should show kinetic processes. Although a gating model is more consistent with the known behaviour of channels than a diode model, previous work has failed to find any time course for the rectification. We have now developed a high-quality voltage clamp and by working at reduced temperatures we are able to demonstrate channel kinetics. These results support the hypothesis that this rectifying synapse contains voltage-dependent gates.[Abstract] [Full Text] [Related] [New Search]