These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect and genesis of soil nitrogen loading and hydrogeological conditions on the distribution of shallow groundwater nitrogen pollution in the North China Plain.
    Author: Xia Q, He J, He B, Chu Y, Li W, Sun J, Wen D.
    Journal: Water Res; 2023 Sep 01; 243():120346. PubMed ID: 37482006.
    Abstract:
    The North China Plain (NCP) has experienced increasingly severe groundwater nitrogen (TN) pollution. However, the factors influencing TN distribution are still poorly understood. Previous studies have identified surface soil nitrogen (TSN) loading and intrinsic groundwater vulnerability (Inv) as the main factors controlling groundwater TN pollution. However, in this study, based on 3245 shallow groundwater samples in the NCP, the multiple regression analysis results(R2=0.105, p<0.001) revealed that the TN was not mainly controlled by TSN and Inv. The lower prediction accuracy indicated the large data dispersion of TN, which might be affected by nitrogen attenuation or accumulation. Thus, the NCP was divided into balance, attenuation, and accumulation zones according to the regression equation. The attenuation zone was mainly distributed in the inter-fan and fan edge parts of the pre-mountain alluvial floodplain, as well as the west and south of the runoff area, while the accumulation zone was mainly distributed in the top part of the pre-mountain alluvial floodplain and the east of discharge area. Multi-indicators comparative analysis showed that compared to the balance (Eh= 76.2 mV) and accumulation (Eh=126.7 mV) zones, the attenuation zone has a stronger reducing environment (Eh=30.8 mV) favorable to denitrification, which can reduce the TN pollution (0.49 mg/L) caused by surface nitrogen input and consume more electron donors. Conversely, the stronger oxidizing environment in the accumulation zone limited denitrification, resulting in higher TN concentrations (19.14 mg/L) in the aquifers under the same TSN and Inv conditions as the other two zones. The standardized effects and significance on each path of the structural equation model (SEMs) fully confirmed the reliability of the above zonal analysis. Importantly, the feature importance (23.6%) of random forest and standardized effects (0.455, p<0.001) of SEMs showed that the Eh had the strongest influence on TN. Thus, the redox conditions of the aquifer, in addition to TSN and Inv, played a crucial role in controlling the TN pollution in the groundwater of a large region. The zoning work and the analysis of influencing factors are important to guide scientific prevention and control of groundwater nitrogen pollution.
    [Abstract] [Full Text] [Related] [New Search]