These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Skin type and nerve effects on cortical tactile processing: a somatosensory evoked potentials study.
    Author: Guidotti M, Beaurieux C, Marionnaud P, Bonnet-Brilhault F, Wardak C, Latinus M.
    Journal: J Neurophysiol; 2023 Sep 01; 130(3):547-556. PubMed ID: 37492898.
    Abstract:
    Somatosensory evoked potential (SEP) studies typically characterize short-latency components following median nerve stimulations of the wrist. However, these studies rarely considered 1) skin type (glabrous/hairy) at the stimulation site, 2) nerve being stimulated, and 3) middle-latency (>30 ms) components. Our aim was to investigate middle-latency SEPs following simple mechanical stimulation of two skin types innervated by two different nerves. Eighteen adults received 400 mechanical stimulations over four territories of the right hand (two nerves: radial/median; two skin types: hairy/glabrous skin) while their EEG was recorded. Four middle-latency components were identified: P50, N80, N130, and P200. As expected, significantly shorter latencies and larger amplitudes were found over the contralateral hemisphere for all components. A skin type effect was found for the N80; glabrous skin stimulations induced larger amplitude than hairy skin stimulations. Regarding nerve effects, median stimulations induced larger P50 and N80. Latency of the N80 was longer after median nerve stimulation compared with radial nerve stimulation. This study showed that skin type and stimulated nerve influence middle-latency SEPs, highlighting the importance of considering these parameters in future studies. These modulations could reflect differences in cutaneous receptors and somatotopy. Middle-latency SEPs can be used to evaluate the different steps of tactile information cortical processing. Modulation of SEP components before 100 ms possibly reflects somatotopy and differential processing in primary somatosensory cortex.NEW & NOTEWORTHY The current paper highlights the influences of stimulated skin type (glabrous/hairy) and nerve (median/radial) on cortical somatosensory evoked potentials. Mechanical stimulations were applied over four territories of the right hand in 18 adults. Four middle-latency components were identified: P50, N80, N130, and P200. A larger N80 was found after glabrous skin stimulations than after hairy skin ones, regardless of the nerve being stimulated. P50 and N80 were larger after median than radial nerve stimulations.
    [Abstract] [Full Text] [Related] [New Search]