These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sustainable remediation of dye-contaminated wastewater using novel cross-linked Hex-CCP-co-PPT microspheres.
    Author: Mehmood S, Haq F, Kiran M, Shaaban IA, Assiri MA, Haroon M, Yasin M, Farid A, Nawaz A, Akbar MM, El-Bahy ZM.
    Journal: Chemosphere; 2023 Oct; 339():139637. PubMed ID: 37499806.
    Abstract:
    The presence of dyes in contaminated water poses substantial dangers to the health of both humans and aquatic life. A process called precipitation polymerization was used to create unique cross-linked hexa-chlorocyclotriphosphazene-co-phenolphthalein (Hex-CCP-co-PPT) microspheres for the purpose of this research. Advanced methods such as X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential thermogravimetry (DTG) were used to characterise these microspheres. In a simulated solution, the performance of Hex-CCP-co-PPTs as a sorbent for removing MB dye was investigated, and the results showed an unprecedentedly high removal rate of 88.4% for MB. Temperature of 25 °C, a Hex-CCP-co-PPTs dose of 40 mg, an MB concentration of 20 ppm, an MB solution volume of 20 mL, a contact time of 40 min, and a pH of 9 were found to be the optimal experimental conditions. According to the results of the kinetic and adsorption analyses, the PSO and Langmuir adsorption models are the best ones to use. These models favour the chemi-sorption nature and mono-layered adsorption of MB in comparison to Hex-CCP-co-PPTs. Importantly, the thermodynamic analysis demonstrated that the process of removing MB by utilizing Hex-CCP-co-PPTs was endothermic and occurred spontaneously. These findings highlight the potential application of Hex-CCP-co-PPT microspheres in Algal Membrane Bioreactors (AMBRs) for the efficient and sustainable removal of dye from wastewater. This would contribute to the protection of ecosystems as well as the public's health.
    [Abstract] [Full Text] [Related] [New Search]