These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel Dental Low-Shrinkage-Stress Composite with Antibacterial Dimethylaminododecyl Methacrylate Monomer.
    Author: Alhussein A, Alsahafi R, Wang X, Mitwalli H, Filemban H, Hack GD, Oates TW, Sun J, Weir MD, Xu HHK.
    Journal: J Funct Biomater; 2023 Jun 25; 14(7):. PubMed ID: 37504831.
    Abstract:
    OBJECTIVES: Current dental resins exhibit polymerization shrinkage causing microleakage, which has the potential to cause recurrent caries. Our objectives were to create and characterize low-shrinkage-stress (LSS) composites with dimethylaminododecyl methacrylate (DMADDM) as an antibacterial agent to combat recurrent caries. METHODS: Triethylene glycol divinylbenzyl ether and urethane dimethacrylate were used to reduce shrinkage stress. DMADDM was incorporated at different mass fractions (0%, 1.5%, 3%, and 5%). Flexural strength, elastic modulus, degree of conversion, polymerization stress, and antimicrobial activity were assessed. RESULTS: The composite with 5% DMADDM demonstrated higher flexural strength than the commercial group (p < 0.05). The addition of DMADDM in BisGMA-TEGDMA resin and LSS resin achieved clinically acceptable degrees of conversion. However, LSS composites exhibited much lower polymerization shrinkage stress than BisGMA-TEGDMA composite groups (p < 0.05). The addition of 3% and 5% DMADDM showed a 6-log reduction in Streptococcus mutans (S. mutans) biofilm CFUs compared to commercial control (p < 0.001). Biofilm biomass and lactic acid were also substantially decreased via DMADDM (p < 0.05). CONCLUSIONS: The novel LSS dental composite containing 3% DMADDM demonstrated potent antibacterial action against S. mutans biofilms and much lower polymerization shrinkage-stress, while maintaining excellent mechanical characteristics. The new composite is promising for dental applications to prevent secondary caries and increase restoration longevity.
    [Abstract] [Full Text] [Related] [New Search]