These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of an In-Office Bleaching Agent with Surface Pre-Reacted Glass-Ionomer Filler on the Enamel Surface: A In-Vitro Study.
    Author: Shimojima M, Hiraishi N, Akabane K, Nassar M, Otsuki M, Shimada Y.
    Journal: J Funct Biomater; 2023 Jul 21; 14(7):. PubMed ID: 37504881.
    Abstract:
    In-office bleaching with high concentrations of hydrogen peroxide (H2O2) agents causes undesirable alterations in the enamel. Surface pre-reacted glass-ionomer (S-PRG) filler is a functional material known for its acid-neutralizing and demineralization-inhibition properties. This study evaluates the effect of S-PRG filler incorporation in H2O2-based bleaching on the enamel surface. Bovine enamel surfaces were bleached using a bleaching paste formulated with a liquid (35% H2O2) and a powder containing 5% or 10% S-PRG filler. The surface roughness and the Vickers microhardness of the treated enamel surfaces were evaluated. The enamel surfaces were observed under a scanning electron microscope (SEM) and analyzed using energy dispersive X-ray (EDX) technology. The surfaces were challenged by citric acid and observed by SEM. The specimens bleached with the paste containing the S-PRG filler showed lower enamel surface roughness and higher microhardness values than did those bleached with the plain paste (0% S-PRG filler); meanwhile, there were no significant differences between the 5% or 10% S-PRG filler groups. The S-PRG filler groups showed enamel surface morphologies similar to those of the non-bleached enamel, according to SEM observation, and EDX analysis detected the presence of fluoride and strontium ions. The S-PRG filler groups showed a higher resistance to erosion. The S-PRG filler mitigated the detrimental effects of bleaching agents on the enamel surface and provided resistance to erosion.
    [Abstract] [Full Text] [Related] [New Search]