These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Valproic acid increases CAR T cell cytotoxicity against acute myeloid leukemia. Author: Wen J, Chen Y, Yang J, Dai C, Yu S, Zhong W, Liu L, He C, Zhang W, Yang T, Liu L, Hu J. Journal: J Immunother Cancer; 2023 Jul; 11(7):. PubMed ID: 37524506. Abstract: The treatment of B cell malignancies has dramatically changed with the introduction of immunotherapy, especially chimeric antigen receptor T (CAR-T) cell therapy. However, only limited efficacy is observed in acute myeloid leukaemia (AML). In the study, We detected CD123 and CLL-1 expression on leukaemia cells from Relapsed/Refractory AML (R/R AML) patients. Then, we constructed anti-CD123 CAR and CLL-1 CAR with different co-stimulation domains (CD28 or 4-1BB) and detected their anti-AML effects. To increase the efficacy of CAR-T cell therapy, we tested different strategies, including application of combined checkpoint inhibitors and histone deacetylase inhibitors (HDACi) in vivo and in vitro We found CD123 and CLL-1 were highly expressed on AML cells. The proportions of T cell subsets and NK cells involved in anti-tumour or anti-inflammation processes in AML patients significantly decreased when compared with healthy donors. Both CD123 CAR and CLL-1 CAR displayed specific anti-AML effects in vitro To improve the lysis effects of CAR-T cells, we combined CAR-T cell therapy with different agents. PD-1/PD-L1 antibodies only slightly improved the potency of CAR-T cell therapy (CD123 CAR-T 60.92% ± 2.9087% vs. 65.43% ± 2.1893%, 60.92% ± 2.9087% vs. 67.43% ± 3.4973%; 37.37% ± 3.908% vs. 41.89% ± 5.1568%, 37.37% ± 3.908% vs. 42.84% ± 4.2635%). However, one HDACi (valproic acid [VPA]) significantly improved CAR-T cell potency against AML cells (CLL-1 CAR-T 34.97% ± 0.3051% vs. 88.167% ± 1.5327%, p < 0.0001; CD123 CAR-T 26.87% ± 2.7010% vs. 82.56% ± 3.086%, p < 0.0001 in MV411; CLL-1 CAR-T 78.77% ± 1.2061% vs. 93.743% ± 1.2333%, p < 0.0001; CD123 CAR-T 64.10% ± 1.5130% vs. 94.427% ± 0.142%, p = 0.0001 in THP-1). Combination therapy prolonged the overall survival of mice when compared with single CD123 CAR-T cell therapy (median survival: 180 days vs. unfollowed). A possible mechanism is that activated CD8+T cells upregulate natural-killer group 2 member D (NKG2D), and VPA upregulates NKG2D ligand expression in AML cells, contributing to NKG2D-mediated cytotoxicity of CAR-T cells against tumour cells. In conclusion, CD123 and CLL-1 are promising targets for AML CAR-T cell therapy. A combination of VPA pre-treatment and CAR-T against AML exhibits synergic effects.[Abstract] [Full Text] [Related] [New Search]