These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pollution source identification of nitrogen and phosphorus in the lower West Main Canal, the Ganfu Plain irrigation district (South China). Author: Wu Z, Rao W, Zheng F, Zhang C, Li T. Journal: Environ Monit Assess; 2023 Aug 01; 195(8):1011. PubMed ID: 37526760. Abstract: The degradation of surface water quality has been a widespread concern around the world. However, irrigation canal water does not attract much attention although it is important to agriculture and population. In this study, a 5-year water quality monitoring of surface water was conducted in the lower West Main Canal of the Ganfu Plain irrigation district to identify the levels and pollution sources of nitrogen and phosphorus.Over 75% of samples had total phosphorus (TP) concentrations of > 0.02 mg/L, and all samples had total nitrogen (TN) concentrations of > 0.2 mg/L, indicating a risk of eutrophication. The concentrations of NO3--N and NH4+-N averagely occupied 57% and 18% of TN, respectively. PCA analysis showed that phosphorus and nitrogen in canal water were associated with meteorological factors, urban life and surface runoff, agricultural cultivation, livestock-poultry breeding, and water-sediment interaction in the wet season, whereas they were affected by meteorological factors, industrial effluent, urban domestic sewage, and livestock-poultry breeding in the dry season. Absolute principal component score-multiple linear regression (APCS-MLR) model results revealed that (1) agricultural cultivation plus livestock-poultry breeding contributed 43.2% of TP in canal water in the wet season, while livestock-poultry breeding contributed 52.9% in the dry season, and (2) domestic sewage plus surface runoff contributed 29.4% of TN in the wet season, while livestock-poultry breeding contributed 45.9% in the dry season. The unidentified sources had significant contributions of > 20% for almost all variables. So further investigations are required for determining unidentified sources, and anthropogenic pollution control is imperative for canal water quality protection.[Abstract] [Full Text] [Related] [New Search]