These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: P53 regulates CCAAT/Enhancer binding protein β gene expression.
    Author: Hu B, Liu T, Wu Z, Phan SH.
    Journal: Gene; 2023 Oct 30; 884():147675. PubMed ID: 37541559.
    Abstract:
    BACKGROUND: The transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) is implicated in diverse processes and diseases. Its two isoforms, namely liver-enriched activator protein (LAP) and liver-enriched inhibitor protein (LIP) are translated from the same mRNA. They share the same C-terminal DNA binding domain except LAP has an extra N-terminal activation domain. Probably due to its higher affinity for its DNA cognate sequences, LIP can inhibit LAP transcriptional activity even at substoichiometric levels. However, the regulatory mechanism of C/EBPβ gene expression and the LAP: LIP ratio is unclear. METHODS: In this study, the C/EBPβ promoter sequence was scanned for conserved P53 response element (P53RE), and binding of P53 to the C/EBPβ promoter was tested by Electrophoretic Mobility Shift Assay (EMSA) and chromatin immunoprecipitation assay. P53 over-expression and dominant negative P53 expression plasmids were transfected into rat lung fibroblasts and tested for C/EBPβ gene transcription and expression. Western blot analysis was used to test the regulation of C/EBPβ LAP and LIP isoforms. Constructs containing the LAP 5'untranslated region (5'UTR) or the LIP 5'UTR region were used to test the importance of 5'UTR in the control of C/EBPβ LAP and LIP translation. RESULTS: The C/EBPβ promoter sequence was found to contain a conserved P53 response element (P53RE), which binds P53 as demonstrated by Electrophoresis Mobility Shift Assay and chromatin immunoprecipitation assays. P53 over-expression suppressed while dominant negative P53 stimulated C/EBPβ gene transcription and expression. Western blot analysis showed that P53 differentially regulated the translation of the C/EBPβ LAP and LIP isoforms through the regulation of eIF4E and eIF4E-BP1. Further studies with constructs containing the LAP 5'untranslated region (5'UTR) or the LIP 5'UTR region showed that the 5'UTR is important in differential control of C/EBPβ LAP and LIP translation. CONCLUSION: Analysis of the effects of P53 on C/EBPβ expression revealed a novel mechanism by which P53 could antagonize the effects of C/EBPβ on its target gene expression. For the first time, P53 is shown to be a repressor of C/EBPβ gene expression at both transcriptional and translational levels, with a differential effect in the magnitude of the effect on LAP vs. LIP isoforms.
    [Abstract] [Full Text] [Related] [New Search]