These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A programmed surface on dental implants sequentially initiates bacteriostasis and osseointegration. Author: Li J, Wu X, Liang Z, Wei Z, Chen Z, Wang Y, Li W, Zhang W, Yang R, Qiu H, Li X, Li Q, Chen J. Journal: Colloids Surf B Biointerfaces; 2023 Oct; 230():113477. PubMed ID: 37544027. Abstract: Osteogenesis surrounding dental implants is initiated by a series of early physiological events, including the inflammatory response. However, the persistence of an anti-infection surface often results in compromised histocompatibility and osseointegration. Here, we presented a programmed surface containing both silver nanoparticles (AgNPs) and silver ions (Ag+) with a heterogeneous structure and time-dependent functionalities. The AgNPs were located at the surface of the heparin-chitosan polyelectrolyte coating (PEM), whereas Ag+ was distributed at both the surface and inside of the coating under optimized conditions (pH=4). The optimized coating (Ag-4) exhibited potent bactericidal activity at the early stage (12 and 24 h after inoculation) and a sustained antibacterial efficacy in the subsequent stage (one or two weeks), as it gradually depleted. Furthermore, compared to coatings with sustained high silver concentrations in bacteria-cell coculture experiments, the degradable Ag-4 coating demonstrated improved cytocompatibility, better cell viability, and morphology over time. At a later stage (within one month), the in vivo test revealed that Ag-4-coated titanium had superior histocompatibility and osteogenesis outcomes compared to bare titanium in a bacteria-exposed environment. The programmed surface of dental implants presented in this study offers innovative ideas for sequential antibacterial effects and osseointegration.[Abstract] [Full Text] [Related] [New Search]