These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Si-Ni-San Ameliorates the Clinical Symptoms of Interstitial Cystitis/Bladder Pain Syndrome in Rats by Decreasing the Expression of Inflammatory Factors.
    Author: Yang Y, Shi Z, Yu H, Liu M, Hu T, Han C.
    Journal: Arch Esp Urol; 2023 Jul; 76(5):347-356. PubMed ID: 37545154.
    Abstract:
    OBJECTIVE: To observe the therapeutic effect of Si-Ni-San (SNS) on interstitial cystitis/bladder pain syndrome (IC/BPS) in rats, and explore the possible regulatory mechanism of SNS on IC/BPS combined with transcriptome analysis. METHODS: An IC/BPS model of Sprague-Dawley (SD) rats was established with cyclophosphamide (CYP), and the SNS was extracted for treatment. The rats were divided into 4 groups (n = 10 in each group): Control group (blank), cyclophosphamide group (CYP group, CYP injection + normal saline gavage), lower-dose SNS group (LSNS group, CYP injection + 6 g/kg SNS gavage), and higher-dose SNS group (HSNS group, CYP injection + 12 g/kg SNS gavage). Urination, pain, and histological changes were observed in the rats after the experiment, and Western blotting (WB) and transcriptome analysis were performed on bladder tissues. RESULTS: Compared with the CYP group, the urination, pain and inflammation symptoms of the IC/BPS model rats in the SNS treatment groups (LSNS and HSNS) were significantly improved (p < 0.05). WB results showed that the expressions of inflammation-related proteins interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the SNS treatment groups were significantly decreased compared with those in the CYP group. Transcriptome results showed that SNS can affect the expression of inflammation-related genes and inflammatory signaling pathways. CONCLUSIONS: SNS can significantly alleviate the symptoms of inflammation and pain in IC/BPS rats, and its mechanism may be related to the down-regulation of inflammatory factors IL-6 and TNF-α through messenger RNA (mRNA) and long non-coding RNA (LncRNA) pathways.
    [Abstract] [Full Text] [Related] [New Search]