These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ATP modulates the activity of the voltage-gated proton channel through direct binding interaction.
    Author: Kawanabe A, Takeshita K, Takata M, Fujiwara Y.
    Journal: J Physiol; 2023 Sep; 601(18):4073-4089. PubMed ID: 37555355.
    Abstract:
    ATP is an important molecule implicated in diverse biochemical processes, including the modulation of ion channel and transporter activity. The voltage-gated proton channel (Hv1) controls proton flow through the transmembrane pathway in response to membrane potential, and various molecules regulate its activity. Although it is believed that ATP is not essential for Hv1 activity, a report has indicated that cytosolic ATP may modulate Hv1. However, the detailed molecular mechanism underlying the effect of ATP on Hv1 is unknown, and whether ATP is involved in the physiological regulation of Hv1 activity remains unclear. Here, we report that cytosolic ATP is required to maintain Hv1 activity. To gain insight into the underlying mechanism, we analysed the effects of ATP on the mouse Hv1 channel (mHv1) using electrophysiological and microscale thermophoresis (MST) methods. Intracellular ATP accelerated the activation kinetics of mHv1, thereby increasing the amplitude of the proton current within the physiological concentration range. The increase in proton current was reproduced with a non-hydrolysable ATP analogue, indicating that ATP directly influences Hv1 activity without an enzymatic reaction. The direct molecular interaction between the purified mHv1 protein and ATP was analysed and demonstrated through MST. In addition, ATP facilitation was observed for the endogenous proton current flowing through Hv1 in the physiological concentration range of ATP. These results suggest that ATP influences Hv1 activity via direct molecular interactions and is required for the physiological function of Hv1. KEY POINTS: We found that ATP is required to maintain the activity of voltage-gated proton channels (Hv1) and investigated the underlying molecular mechanism. Application of intracellular ATP increased the amplitude of the proton current flowing through Hv1, accompanied by an acceleration of activation kinetics. The direct interaction between purified Hv1 protein and ATP was quantitatively analysed using microscale thermophoresis. ATP enhanced endogenous proton currents in breast cancer cell lines. These results suggest that ATP influences Hv1 activity via direct molecular interactions and that its functional characteristics are required for the physiological activity of Hv1.
    [Abstract] [Full Text] [Related] [New Search]