These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metal-organic framework based drug delivery systems as smart carriers for release of poorly soluble drugs hydrochlorothiazide and dapsone. Author: Yadav P, Bhardwaj P, Maruthi M, Chakraborty A, Kanoo P. Journal: Dalton Trans; 2023 Aug 22; 52(33):11725-11734. PubMed ID: 37555452. Abstract: Drug delivery systems (DDSs) that are derived from biocompatible carriers are attractive platforms for sustained release of drugs. In particular, sustained and controlled release of poorly soluble BCS (Biopharmaceutics Classification System) class IV drugs is important and this requires the development of new DDSs. In this work, we exploit two porous metal-organic frameworks (MOFs) MIL-100(Fe) and MIL-53(Fe) as carriers/DDSs for the release of two BCS class IV drugs hydrochlorothiazide (HCT) and dapsone (DAP). The chosen MOFs are known to possess good physicochemical stability and we realized high drug loading capacity that is attributed to the high porosity of the MOFs. The drug-encapsulated MOFs were characterized thoroughly and our results show ∼23.1% loading of HCT in MIL-100(Fe) and ∼27.6% loading of DAP in MIL-Fe(53), respectively. The release study of these drugs was carried out under simulated physiological conditions that shows sustained release of the drug molecules from the MOFs up to 72 h. Cell viability studies through MTT assays show insignificant cytotoxicity signalling biocompatibility of the proposed DDSs. Our investigations suggest MIL-100(Fe) and MIL-53(Fe) are potential DDSs for enhancing the performance of poorly soluble drugs HCT and DAP.[Abstract] [Full Text] [Related] [New Search]