These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of a human peripheral blood ex vivo model for rapid protein biomarker detection and applications to radiation biodosimetry.
    Author: Nemzow L, Boehringer T, Bacon B, Turner HC.
    Journal: PLoS One; 2023; 18(8):e0289634. PubMed ID: 37561730.
    Abstract:
    In the event of a widespread radiological incident, thousands of people may be exposed to a wide range of ionizing radiation. In this unfortunate scenario, there will be a need to quickly screen a large number of people to assess the amount of radiation exposure and triage for medical treatment. In our earlier work, we previously identified and validated a panel of radiosensitive protein biomarkers in blood leukocytes, using the humanized-mouse and non-human primate (NHP) models. The objective of this work was to develop a high-throughput imaging flow-cytometry (IFC) based assay for the rapid measurement of protein biomarker expression in human peripheral blood samples irradiated ex vivo. In this assay design, peripheral human blood samples from healthy adult donors were exposed to 0-5 Gy X-irradiation ex vivo and cultured for up to 2 days. Samples were stained with a cocktail of surface antigens (CD66b, CD20, and CD3), fixed and permeabilized, and intracellularly stained for BAX (Bcl-2-associated X) protein, used here as a representative biomarker. Samples were interrogated by IFC, and a uniform analysis template was created to measure biomarker expression in heterogeneous and specific leukocyte subtype populations at each time point. In this human blood ex vivo model, we show that within gated populations of leukocyte subtypes, B-cells are highly radiosensitive with the smallest surviving fraction, followed by T-cells and granulocytes. Dose-dependent biomarker responses were measured in the lymphocytes, B-, and T-cell populations, but not in the granulocytes, with dose-response curves showing increasing fold changes in BAX protein expression up to Day 2 in lymphocyte populations. We present here the successful use of this ex vivo model for the development of radiation dose-response curves of a candidate protein biomarker towards future applications of dose reconstruction and biodosimetry.
    [Abstract] [Full Text] [Related] [New Search]