These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation of Ce-MnOx Composite Oxides via Coprecipitation and Their Catalytic Performance for CO Oxidation.
    Author: Yang J, Li J, Kang J, Liu W, Kuang Y, Tan H, Yu Z, Yang L, Yang X, Yu K, Fan Y.
    Journal: Nanomaterials (Basel); 2023 Jul 25; 13(15):. PubMed ID: 37570476.
    Abstract:
    Ce-MnOx composite oxide catalysts with different proportions were prepared using the coprecipitation method, and the CO-removal ability of the catalysts with the tested temperature range of 60-140 °C was investigated systematically. The effect of Ce and Mn ratios on the catalytic oxidation performance of CO was investigated using X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), H2 temperature programmed reduction (H2-TPR), CO-temperature programmed desorption (CO-TPD), and in situ infrared spectra. The experimental results reveal that under the same test conditions, the CO conversion rate of pure Mn3O4 reaches 95.4% at 170 °C. Additionally, at 140 °C, the Ce-MnOx series composite oxide catalyst converts CO at a rate of over 96%, outperforming single-phase Mn3O4 in terms of catalytic performance. With the decrement in Ce content, the performance of Ce-MnOx series composite oxide catalysts first increase and then decrease. The Ce MnOx catalyst behaves best when Ce:Mn = 1:1, with a CO conversion rate of 99.96% at 140 °C and 91.98% at 100 °C.
    [Abstract] [Full Text] [Related] [New Search]