These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ratiometric surface-enhanced Raman scattering strategy using gold nanoparticles confined on an ultrathin polydimethylsiloxane grafted gold mirror film substrate for ferbam screening in fruit juice. Author: Ahmad W, Wang L, Li H, Chen Q. Journal: Anal Chim Acta; 2023 Oct 02; 1276():341648. PubMed ID: 37573125. Abstract: BACKGROUND: In surface-enhanced Raman scattering (SERS) detection methods, the intricacies in the synthesis and recognition processes, along with non-uniform substrate morphologies, induce spectral irreproducibility. Metal (gold) nanoparticles (AuNPs) on gold (Au) mirror film configuration along with a ratiometric approach, constitute a potential system to resolve this issue. RESULTS: To acquire a reproducible and stable SERS response, an ultrathin polydimethylsiloxane (PDMS) spacer layer was grafted onto the Au mirror film via a contact heating step. The AuNPs-supported ultrathin PDMS grafted Au mirror film system was extended for ratiometric sensing of ferbam residue in real fruit juice samples. The hydrophobic PDMS localizes the AuNPs, 4-nitrophenol probe, and ferbam to a smaller region on the PDMS-grafted Au mirror film and prevents their spreading and diffusion. The ratiometric SERS response for ferbam target and probe ratio at I1376/I1326 cm-1 was monitored on the AuNPs@PDMS grafted Au mirror film substrate with good linear fitting. A detection limit of 1.09 × 10-8 mol L-1 and a relative standard deviation of 11.90% were obtained. In addition, ferbam residues in grape and orange juice samples were successfully recovered (96.86%-99.76%). SIGNIFICANCE: The AuNPs@PDMS grafted Au mirror film substrate, coupled with ratiometric analysis, showed excellent SERS activity with high sensitivity and reproducibility. The proposed platform can be adequately extended to detect other pesticide types in complex food settings.[Abstract] [Full Text] [Related] [New Search]