These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Light-induced calcium release in isolated intact cattle rod outer segments upon photoexcitation of rhodopsin.
    Author: Kaupp UB, Schnetkamp PP, Junge W.
    Journal: Biochim Biophys Acta; 1979 Apr 19; 552(3):390-403. PubMed ID: 375978.
    Abstract:
    By applying flash-spectrophotometry with the calcium-indicating dye arsenazo III rapid light-triggered calcium release in various cattle rod outer segment preparations was studied. It is shown that light-induced calcium signals can be unambiguously discriminated from underlying absorption changes due to photolysis of rhodopsin and apparent absorption changes resulting from lightscattering transients. The following results have been obtained: 1. Calcium-induced arsenazo III responses can be quantitatively and kinetically resolved within the time domain of the visual transduction process. 2. Photoexcitation of rhodopsin results in calcium release from intradiscal binding sites. 3. Calcium released does not appear in the cytoplasmic space unless the disc membrane is made permeable to calcium ions by an ionophore. 4. The shortest observed half-rise time of calcium release (300 ms) is possibly limited by the ionophore. 5. The stoichiometric ratio of calcium released/rhodopsin bleached is 0.5 at a free calcium concentration of 2 microM. The amount of calcium released is proportional to the precentage of rhodopsin bleaching (from 1--10%). 6. Upon disruption of the disc stack by lysis of intact rod outer segments the light-induced calcium release is greatly altered. The results are discussed in relation to previous reports on a light-induced calcium release from retinal discs and in terms of the proposed role of calcium as an intracellular transmitter in vertebrate photoreceptors.
    [Abstract] [Full Text] [Related] [New Search]