These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anaerobic Co-digestion of sewage sludge and organic fraction of municipal solid waste: Focus on mix ratio optimization and synergistic effects. Author: Kumari M, Chandel MK. Journal: J Environ Manage; 2023 Nov 01; 345():118821. PubMed ID: 37598490. Abstract: The utilization of municipal solid waste (MSW) and sewage sludge (SS) as a source of renewable energy is crucial in achieving sustainable and integrated MSW management. SS and organic fraction of municipal solid waste (OFMSW) can be anaerobically digested to produce methane for energy. However, anaerobic digestion of specific substrates is challenging with respect to substrate characteristics. The problem of mono-digestion can be mitigated by co-digestion of these two major organic wastes because of their complementary characteristics. Moreover, there is a lack of studies on optimization of different mix ratios of organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) based on total solids (TS). The study aims to optimize the mix ratio for anaerobic co-digestion of OFMSW and SS. The study further elucidates synergistic effects associated with the co-digestion process. Different mix ratios of SS and OFMSW (0:100, 20:80, 40:60, 60:40, 80:20, 100:0) at 5, 7.5 and 10% TS were assessed for biomethane potential assessment. The results showed that with an increase in SS in the mix ratio feed the methane yield increased by 91% and 50% as compared to mono digestion of sewage sludge and OFMSW respectively at TS 7.5%. Based on the kinetic analysis, it was observed that the lag phase reduced for 60:40 mix ratio leading to higher rate of biodegradation. Positive synergistic effects were observed for 40:60, 60:40 and 80:20 mix ratio of SS:OFMSW based on co-digestion impact factor value. Response surface modelling was used to get the optimized mix ratio and TS %. The optimum mix ratio with the highest methane yield (388 ml/gVS added) was 70:30 (SS: OFMSW) at TS 7.5% with a desirability value of 0.98. These findings demonstrate that co-digesting SS and OFMSW is a preferable alternative for harnessing renewable energy and managing organic waste in a sustainable manner.[Abstract] [Full Text] [Related] [New Search]