These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants.
    Author: Tripathy BC, Rebeiz CA.
    Journal: J Biol Chem; 1986 Oct 15; 261(29):13556-64. PubMed ID: 3759979.
    Abstract:
    It is shown that barley (Hordeum vulgare), a dark monovinyl/light divinyl plant species, and cucumber (Cucumis sativus L.) a dark divinyl/light divinyl plant species synthesize monovinyl and divinyl protochlorophyllide in darkness from monovinyl and divinyl protoporphyrin IX via two distinct monovinyl and divinyl monocarboxylic chlorophyll biosynthetic routes. Evidence for the operation of monovinyl monocarboxylic biosynthetic routes consisted (a) in demonstrating the conversion of delta-aminolevulinic acid to monovinyl protoporphyrin and to monovinyl Mg-protoporphyrins, and (b) in demonstrating the conversion of these tetrapyrroles to monovinyl protochlorophyllide by both isolated barley and cucumber etiochloroplasts. Likewise, evidence for the operation of divinyl monocarboxylic chlorophyll biosynthetic routes consisted (a) in demonstrating the biosynthesis of divinyl protoporphyrin and divinyl Mg-protoporphyrins from delta-aminolevulinic acid, and (b) in demonstrating the conversion of the latter tetrapyrroles to divinyl protochlorophyllide. Finally, it was shown that the divinyl tetrapyrrole substrates were metabolized differently by barley and cucumber. For example, divinyl protoporphyrin, divinyl Mg-protoporphyrin, and divinyl Mg-protoporphyrin monoester were converted predominantly to monovinyl protochlorophyllide and to smaller amounts of divinyl protochlorophyllide by barley etiochloroplasts. In contrast, cucumber etiochloroplasts converted the above substrates predominantly to divinyl protochlorophyllide, although smaller amounts of monovinyl protochlorophyllide were also formed. Furthermore, it was shown that monovinyl protochlorophyllide was not formed from divinyl protochlorophyllide either in barley or in cucumber etiochloroplasts. These metabolic differences are explained by the presence of strong biosynthetic interconnections between the divinyl and monovinyl monocarboxylic routes, prior to divinyl protochlorophyllide formation, in barley but not in cucumber.
    [Abstract] [Full Text] [Related] [New Search]