These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrochemical immunosensor based on carbon nanofibers and gold nanoparticles for detecting anti-Toxoplasma gondii IgG antibodies. Author: Salimi M, Keshavarz-Valian H, Mohebali M, Geravand M, Adabi M, Shojaee S. Journal: Mikrochim Acta; 2023 Aug 24; 190(9):367. PubMed ID: 37620515. Abstract: An electrochemical immunosensor based on carbon nanofibers (CNFs) and gold nanoparticles (AuNPs) was developed for detecting anti-Toxoplasma gondii antibodies (anti-T. gondii) IgG in human serum. CNFs were produced using electrospinning and carbonization processes. Screen-printed carbon electrode (SPCE) surface was modified with CNFs and AuNPs which were electrodeposited onto the CNFs. Then, T. gondii antigen was immobilized onto the AuNPs/CNFs/SPCE. Afterward, anti-T. gondii IgG positive serum samples were coated on the modified electrode and assessed via adding anti-human IgG labeled with horseradish peroxidase (HRP) enzyme. The morphology of SPCE, CNFs, and AuNPs/CNFs/SPCE surface was characterized using field emission scanning electron microscopy (FESEM) equipped with energy dispersive spectroscopy (EDS). Characterization of CNFs was evaluated by Raman spectroscopy and X-ray diffraction (XRD). Electrochemical characterization of the immunosensor was verified using cyclic voltammetry (CV), and electrochemical response of modified electrode for anti-T. gondii IgG was detected via differential pulse voltammetry (DPV). This immunosensor was detected in the range 0-200 U mL-1 with a low detection limit (9 × 10-3 U mL-1). In addition, the proposed immunosensor was exhibited with high selectivity, strong stability, and acceptable reproducibility and repeatability. Furthermore, there was a strong correlation between results obtained via the designed immunosensor and enzyme-linked immunosorbent assay (ELISA) as gold standard. In conclusion, the developed immunosensor is a promising route for rapid and accurate clinical diagnosis of toxoplasmosis.[Abstract] [Full Text] [Related] [New Search]