These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ferrochelatase-inhibitory activity and N-alkylprotoporphyrin formation with analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) containing extended 4-alkyl groups: implications for the active site of ferrochelatase.
    Author: McCluskey SA, Marks GS, Sutherland EP, Jacobsen N, Ortiz de Montellano PR.
    Journal: Mol Pharmacol; 1986 Oct; 30(4):352-7. PubMed ID: 3762522.
    Abstract:
    The ferrochelatase-inhibitory activity, porphyrin-inducing activity, and cytochrome P-450- and heme-destructive effects of a variety of analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) were studied in chick embryo liver cells. The ferrochelatase-inhibitory activity of the 4-butyl, 4-pentyl, 4-hexyl, and 4-cyclopropylmethyl analogues of DDC was considered to be due to the formation of the corresponding N-alkylporphyrins. These N-alkylporphyrins were isolated from the livers of phenobarbital-pretreated rats following administration of the corresponding DDC analogues. The 4-isobutyl analogue did not have ferrochelatase-inhibitory activity despite its ability to cause formation of an N-isobutylporphyrin in rat liver. The 4-chloromethyl analogue of DDC inhibited ferrochelatase activity. The inability to isolate an N-alkylporphyrin from rat liver with this analogue may be due to its lability. The porphyrin-inducing activity of these analogues depended on their ferrochelatase-inhibitory potency and lipophilicity. The DDC analogues caused cytochrome P-450 and heme destruction. The relative ferrochelatase-inhibitory activity of the DDC analogues has implications for a postulated model of the binding of porphyrins in the ferrochelatase active site.
    [Abstract] [Full Text] [Related] [New Search]