These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure of brain grey and white matter in infants with spastic cerebral palsy and periventricular white matter injury. Author: Liu C, Peng Y, Yang Y, Li P, Chen D, Nie D, Liu H, Liu P. Journal: Dev Med Child Neurol; 2024 Apr; 66(4):514-522. PubMed ID: 37635344. Abstract: AIM: To investigate the possible covariation of grey matter volume (GMV) and white matter fractional anisotropy in infants with spastic cerebral palsy (CP) and periventricular white matter injury. METHOD: Thirty-nine infants with spastic CP and 25 typically developing controls underwent structural magnetic resonance imaging and diffusion tensor imaging. Multimodal canonical correlation analysis with joint independent component analysis were used to capture differences in GMV and fractional anisotropy between groups. Correlation analysis was performed between imaging findings and clinical features. RESULTS: Infants with spastic CP showed one joint group-discriminating component (i.e. GMV-fractional anisotropy) associated with regions in the cortico-basal ganglia-thalamo-cortical loop and in the corpus callosum compared to typically developing controls and one modality-specific group-discriminating component (i.e. GMV). Significant negative correlations were found between loadings in certain regions and the motor function score in spastic CP. INTERPRETATION: In infants with spastic CP, covarying GMV-fractional anisotropy and altered GMV in specific regions were implicated in motor dysfunction, which confirmed that simultaneous GMV and fractional anisotropy changes underly motor deficits, but might also extend to sensory, cognitive, or visual dysfunction. These findings also suggest that multimodal fusion analysis allows for a more comprehensive understanding of the relevance between grey and white matter structures and its crucial role in the neuropathological mechanisms of spastic CP.[Abstract] [Full Text] [Related] [New Search]