These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ZIF-67 grafted-boehmite-PVA composite membranes with enhanced removal efficiency towards Cr(VI) from aqueous solutions.
    Author: Vo TK, Phuong NHY, Nguyen VC, Quang DT.
    Journal: Chemosphere; 2023 Nov; 341():139996. PubMed ID: 37648167.
    Abstract:
    In this work, we developed a thin membrane of boehmite-polyvinyl alcohol composite (BOPOM) (diameter ∼ 5 cm) grafted ZIF-67 combing sol-gel and in-situ growth methods. The fabricated materials were characterized using FT-IR, SEM, XRD, TGA, XPS, and N2 sorption techniques. Results indicate that ZIF-67 nanocrystals were well-grafted into the AlOOH-PVA matrix with reduced crystallite size. Furthermore, the decorated ZIF-67 offered additional porous structures and adsorption sites onto the membrane, enhancing their removal efficiency towards Cr6+ compared to the undecorated and pristine ZIF-67. At pH ∼5.5, the harvested ZIF-67/BOPOM exhibited the highest Cr6+ uptake capacity of ∼56.4 mg g-1. Kinetic studies showed that the chromium adsorption on the prepared materials obeyed the pseudo-second-order model, and the kinetic parameters followed the order ZIFF-67/BOPOM (0.020 mg g-1 min-1) > BOPOM (0.011 mg g-1 min-1) > ZIF-67 (0.006 mg g-1 min-1). Notably, the adsorption mechanism study revealed that adsorbed Cr6+ was reduced to Cr3+, and the reduction yield was boosted owing to grafting ZIF-67 into the BOPOM. In addition, the fabricated ZIF-67/BOPOM can simultaneously remove Cr6+ and methyl orange dye (MO) in the solution due to their synergetic effects on each other. Furthermore, the hybrid membrane ZIF-67/BOPOM showed a chromium removal efficiency of ∼78.2% after four successive adsorption-desorption cycles. This study indicates that grafting nanocrystals ZIF-67 onto the super-platform boehmite-PVA is a promising strategy to harvest an adsorbent with a high adsorption ability, cost-effectiveness, and reduced secondary pollution risks.
    [Abstract] [Full Text] [Related] [New Search]