These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The spatiotemporal control of ER membrane fragmentation during reticulophagy. Author: Wang X, Li B, Sun Q. Journal: Autophagy; 2024 Jan; 20(1):210-211. PubMed ID: 37651691. Abstract: Reticulophagy is an evolutionarily conserved mechanism essential to maintain the endoplasmic reticulum (ER) homeostasis. A series of studies identified a panel of reticulophagy receptors. However, it remains unclear how these receptors sense upstream signals for spatiotemporal control of reticulophagy and how ER is fragmented into small pieces for sequestration into phagophores. Recently, we and others showed that the oligomerization of RETREG1/FAM134B (reticulophagy regulator 1), an reticulophagy receptor, triggers the scission of ER membrane to facilitate reticulophagy. Furthermore, we demonstrated that upstream signals are transduced by sequential phosphorylation and acetylation of RETREG1, which stimulate its oligomerization, ER fragmentation and reticulophagy. Our work provides further mechanistic insights into how reticulophagy receptor conveys cellular signals to fine-tune of ER homeostasis.Abbreviations: ER, endoplasmic reticulum; MAP1LC3, microtubule-associated protein light chain 3; RETREG1, reticulophagy regulator 1; RHD, reticulon-homology domain.[Abstract] [Full Text] [Related] [New Search]